DESCRIPTION

The Microsemi LX1725 is part of a new generation of fully integrated stereo class-D amplifiers from Microsemi. The fully integrated halfbridge output for each channel works with both split and single power supply operation. The outputs can be bridged to run in BTL (Bridge Tied Load) mode. In BTL mode, 3-level modulation is used which allow operation without an L-C filter to reduce system cost and area. The LX1725 has >90\% efficiency, with typical output power up to $15 \mathrm{~W}+15 \mathrm{~W}$ in stereo, and 30 W BTL into a 4Ω load with less than 1% THD +N . The amplifier operates over a wide supply voltage range of $\pm 6 \mathrm{~V}$ to $\pm 15 \mathrm{~V}$ split supply or 12 V to 30 V single supply, and consumes a very little quiescent current.

IMPORTANT: For the most current data, consult MICROSEMI's website: http://www.microsemi.com

The LX1725 features Mute and Standby modes, over-current protection, POP-free turn-on and turn-off, undervoltage lockout, over-voltage protection and over-temperature protection. All built-in protection modes allow automatic recovery when the fault condition has been cleared. The gain is pin selectable between 14 / 20 / 26dB to accommodate different signal source amplitudes. Several LX1725s can be easily synchronized together to prevent beat frequency interference in multichannel applications..

The LX1725 comes in a MLPQ 32 pin package with a 7 mmx 7 mm small outline surface mount.

KEY FEATURES

- 12Wx2 @ 4Ω THD+N<1\% $16 \mathrm{~W} \times 2$ @ 4Ω THD+N<10\%
- 25W BTL @ 8Ω THD+N<1\%

32W BTL @ 8Ω THD+N<10\%

- High Efficiency: >90\% @8
- Full Audio Band: 20Hz~20KHz
- Low Distortion:
<0.1\% @1KHz, 8
<0.4\% @20~20KHz, 8
- High Signal-to-Noise Ratio: $>85 \mathrm{~dB}$ non A-Weighted
- Split/Single Power Supply
- Wide Supply Voltage Range: $\pm 6 \mathrm{~V} \sim \pm 15 \mathrm{~V}$ or $12 \mathrm{~V} \sim 30 \mathrm{~V}$
- Low Quiescent Current <20mA
- Turn ON/OFF POP Free
- STANDBY/MUTE Feature
- Programmable Gain 14/20/26dB
- Built-in Over Current Protection
- Built-in Under Voltage Lockout
- Thermal Shut Down
- Power Limiting Based on Die

Temperature (gain fold back)

- Synchronization

Note: Available in Tape \& Reel. Append the letters "TR" to the part

 number. (i.e. LX1725ILQ-TR)

Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of specified terminal.

THERMAL DATA

LQ Plastic MLPQ 32-Pin

THERMAL RESISTANCE-JUNCTION TO CASE, θ_{JC} thermal resistance-junction to Ambient, $\theta_{\text {JA }}$
 $1.12^{\circ} \mathrm{C} / \mathrm{W}$
 $15.5^{\circ} \mathrm{C} / \mathrm{W}$

Junction Temperature Calculation: $\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\left(\mathrm{P}_{\mathrm{D}} \mathrm{X} \theta_{\mathrm{JA}}\right)$.
The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. All of the above assume no ambient airflow.

FUNCTIONAL PIN DESCRIPTION

Name	Description
VPOSA	Analog voltage sense for VPOS voltage. Needs to be protected from noise at VPOS1 and VPOS2. Connect to VPOS bus with appropriate filtering. For VPOSA - VNEGA less than 10V, the under voltage lockout circuit will keep the part in sleep mode. Typically $250 \mu \mathrm{~A}$ is drawn at this pin.
VCOMA	Analog voltage sense for VCOM voltage. Typically $150 \mu \mathrm{~A}$ is drawn at this pin.
SYNC	Bi-directional clock signal pin. In Master mode, this pin outputs the clock to other slave units. In Slave mode, this pin is a clock input. CMOS logic levels.
FLAG	Monitor point that indicates a fault has been detected. This pin goes high during the power on reset period, when current limiting is in effect, when the voltage at VPOS - VNEG is less than 10 V or greater than 33 V , when the V 5 V voltage is less than 4 V , and when an over-temperature condition is detected. CMOS logic levels.
RILIM	A current limit-programming resistor should be connected between this pin and ground. A $50 \mathrm{~K} \Omega$ resistor will give a 3.75 A current limit threshold. This pin may be connected to V 5 V in which case both current limiting protection and over-voltage protection will be disabled.
VREF	2.25 V reference voltage, used as a local "gnd" reference. Place a decoupling capacitor greater than $1 \mu \mathrm{~F}$ between this pin and VGND. This pin will be prone to instability for capacitor values less than this. In applications where more several LX1725s are synchronized together, the VREF pins should all be tied together so that all units use a common VREF voltage.
cosc	Place a capacitor between this pin and VGND to generate the PWM triangle wave. A 125 pF capacitor will give an oscillation frequency of about 373 KHz . In Master mode, this pin serves as the output for the triangle wave. In Slave mode, this pin is an input. The total capacitance on this pin will determine the frequency of oscillation.

Production Data Sheet

F U N CT I O N A L P I N D E S C R I P T I O N (C O N T I N U E D)						
Name	Description					

ELECTRICALCHARACTERISTICS
Notes: Unless otherwise specified, the following specifications apply over the operating ambient temperature $\mathrm{T}_{\mathrm{A}}=-40 \sim+85^{\circ} \mathrm{C}^{\circ} \mathrm{C}$ except where otherwise noted (typical @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) and the following test conditions: VPOS $=+12 \mathrm{~V}, \mathrm{VNEG}=-12 \mathrm{~V}, \mathrm{VGND}=0 \mathrm{~V}, \mathrm{~V} 5 \mathrm{~V}=5 \mathrm{~V}$, $\mathrm{VCOM}=0 \mathrm{~V} \mathrm{R}_{\text {ILIM }}=50 \mathrm{Kohm}, \mathrm{C}_{\mathrm{OSC}}=220 \mathrm{pF}, \mathrm{RL}=8 \Omega$.

Production Data Sheet

ELECTRICALCHARACTERISTICS (CONTINUED)

Notes: Unless otherwise specified, the following specifications apply over the operating ambient temperature $\mathrm{T}_{\mathrm{A}}=-40 \sim 85^{\circ} \mathrm{C}$ except where otherwise noted (typical @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$) and the following test conditions: VPOS $=+12 \mathrm{~V}, \mathrm{VNEG}=-12 \mathrm{~V}, \mathrm{VGND}=0 \mathrm{~V}, \mathrm{~V} 5 \mathrm{~V}=5 \mathrm{~V}$, $\mathrm{VCOM}=0 \mathrm{~V} \mathrm{R}_{\text {ILI }}=50 \mathrm{Kohm}, \mathrm{C}_{\mathrm{OSC}}=220 \mathrm{pF}, \mathrm{RL}=8 \Omega$.

* RDSONP and RDSONN include all bond wires and pad resistance.
** GBNT - Guarantee by design and system, no test.

Production Data Sheet

SYSTEM MODULE CHARACTERISTICS

Notes: Unless otherwise specified, the following specifications apply over the operating ambient temperature $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ except where otherwise noted and the following test conditions: VPOS $=+12 \mathrm{~V}, \mathrm{VNEG}=-12 \mathrm{~V}, \mathrm{VGND}=0 \mathrm{~V}, \mathrm{~V} 5 \mathrm{~V}=5 \mathrm{~V}, \mathrm{VCOM}=0 \mathrm{~V} \mathrm{R}_{\text {ILIM }}=50 \mathrm{Kohm}$, $\mathrm{C}_{\mathrm{OSC}}=220 \mathrm{pF}$, Output LC filter $47 \mathrm{uH} / 0.68 \mathrm{uF}, \mathrm{RL}=8 \Omega$, Test equipment built-in BPF $10 \mathrm{~Hz} \sim 22 \mathrm{KHz}$.

Parameter	Symbol	Test Conditions			Units
Parameter	Symbol	Test Conditions	Min		

Output Power Stereo	$\mathrm{R}_{\mathrm{L}}=8 \Omega$	P_{0}	$\mathrm{V}_{\text {POS }} / \mathrm{V}_{\text {NEG }}= \pm 12 \mathrm{~V} ; \mathrm{THD}+\mathrm{N}<1 \%$		7		W
			$\mathrm{V}_{\mathrm{POS}} / \mathrm{V}_{\text {NEG }}= \pm 12 \mathrm{~V}$; THD $+\mathrm{N}<10 \%$		9		
	$\mathrm{R}_{\mathrm{L}}=4 \Omega$	Po	$\mathrm{V}_{\text {POS }} / \mathrm{V}_{\text {NEG }}= \pm 12 \mathrm{~V} ; ~ \mathrm{THD}+\mathrm{N}<1 \%$		12		
			$\mathrm{V}_{\mathrm{POS}} / \mathrm{V}_{\mathrm{NEG}}= \pm 12 \mathrm{~V}$; THD $+\mathrm{N}<10 \%$		16		
Output Power BTL	$\mathrm{R}_{\mathrm{L}}=8 \Omega$	P_{0}	$\mathrm{V}_{\text {POS }}-\mathrm{V}_{\text {NEG }}= \pm 12 \mathrm{~V} ; \mathrm{THD}+\mathrm{N}<1 \%$		25		
			$\mathrm{V}_{\text {POS }}-\mathrm{V}_{\mathrm{NEG}}= \pm 12 \mathrm{~V}$; THD $+\mathrm{N}<10 \%$		32		
Total Harmonic Distortion Stereo	$\mathrm{R}_{\mathrm{L}}=8 \Omega$	THD+N	$\mathrm{V}_{\text {POS }} / \mathrm{V}_{\mathrm{NEG}}= \pm 12 \mathrm{~V}$; Pout $=1 \mathrm{~W}, \mathrm{FIN}=1 \mathrm{KHz}$		0.05	0.08	\%
			$\mathrm{V}_{\text {POS }} / \mathrm{V}_{\text {NEG }}= \pm 12 \mathrm{~V}$; Pout $=1 \mathrm{~W}, \mathrm{FIN}=20 \sim 20 \mathrm{KHz}$			0.5	
	$\mathrm{R}_{\mathrm{L}}=4 \Omega$	THD+N	$\mathrm{V}_{\text {POS }} / \mathrm{V}_{\text {NEG }}= \pm 12 \mathrm{~V}$; Pout $=1 \mathrm{~W}, \mathrm{FIN}=1 \mathrm{KHz}$		0.08	0.1	
			$\mathrm{V}_{\text {POS }} / \mathrm{V}_{\text {NEG }}= \pm 12 \mathrm{~V}$;Pout $=1 \mathrm{~W}, \mathrm{FIN}=20 \sim 20 \mathrm{KHz}$			0.3	
Total Harmonic Distortion BTL	$\mathrm{R}_{\mathrm{L}}=8 \Omega$	THD +N	$\mathrm{V}_{\text {POS }}-\mathrm{V}_{\text {NEG }}= \pm 12 \mathrm{~V}$; Pout $=1 \mathrm{~W}, \mathrm{FIN}=1 \mathrm{KHz}$		0.05	0.08	
			$\mathrm{V}_{\mathrm{POS}} / \mathrm{V}_{\text {NEG }}= \pm 12 \mathrm{~V}$; Pout $=1 \mathrm{~W}, \mathrm{FIN}=20 \sim 20 \mathrm{KHz}$			0.3	
Power Efficiency $\mathrm{R}_{\mathrm{L}}=8 \Omega$	Stereo	η	$\mathrm{V}_{\text {POS }} / \mathrm{V}_{\mathrm{NEG}}= \pm 12 \mathrm{~V}$, Pout $=$ Max, THD $+\mathrm{N}<1 \%$	89	91		\%
Power Efficiency $\mathrm{R}_{\mathrm{L}}=4 \Omega$	Stereo		$\mathrm{V}_{\text {POS }} / \mathrm{V}_{\mathrm{NEG}}= \pm 12 \mathrm{~V}$, Pout $=$ Max, $\mathrm{THD}+\mathrm{N}<1 \%$	80	85		
Channel Crosstalk		$\mathrm{V}_{\text {xtalk }}$	Pout=1W, F=1KHz		-60		dB
Audio Bandwidth		BW	Pout=1W, F=20-20KHz RL=8		2	3	dB
Stage Gain	HIGH	$\mathrm{G}_{\text {SYS }}$	$\mathrm{V}_{\text {IN }}=200 \mathrm{mVrms}, \mathrm{F}=20 \mathrm{~Hz} \sim 20 \mathrm{KHz}$		26		dB
	MID		$\mathrm{V}_{\text {IN }}=200 \mathrm{mVrms}, \mathrm{F}=20 \mathrm{~Hz} \sim 20 \mathrm{KHz}$		20		
	LOW		$\mathrm{V}_{\text {IN }}=200 \mathrm{mVrms}, \mathrm{F}=20 \mathrm{~Hz} \sim 20 \mathrm{KHz}$		14		
Mute Output		$\mathrm{V}_{\text {MUTE }}$	Input short, system muted, stereo		-60		dB
			Input short, system muted, BTL		-60		
Signal to Noise Ratio	Stereo	SNR	$20-20 \mathrm{KHz}$, non A-Weighted, 8Ω		85		dB
			$20-20 \mathrm{KHz}$, non A-Weighted, 4Ω		89		
Output Noise Floor	Stereo	V_{N}	Input short, non A-Weighted @ 20-20KHz, 8		400		$\mu \mathrm{V}_{\mathrm{RMS}}$
			Input short, non A-weighted @ 20-20KHz, 4		300		

CURRENT LIMIT

Current Limit Threshold	$\mathrm{I}_{\text {TH }}$		3.75	4.0	A
Pulse Qualification Count		Any 4 out of 5 clock periods	4		cycles

Under Voltage LockOut

Split	V UVLo
Single	$V_{\text {UVLo }}$

VPOS
VNEG
VPOS, VNEG tied to GND

+5			
-5			V
10			

Note: Characteristics done by system module evaluation.

15W+15W Stereo Class-D Amplifier

 Filterless 30W Mono in BTL
Production Data Sheet

Figure 1 - Simplified Block Diagram (half of the circuit)

Production Data Sheet

FUNCTION DESCRIPTION

Oscillator

LX1725 has a fixed PWM modulation frequency, but it is programmable by using an external capacitor connected to Cosc pin to GND. The switching frequency is approximately 235 KHz with capacitor's value 220 pF . With the capacitor value given, the switching frequency can be calculated as follows:
$\mathrm{F}_{\mathrm{OSC}}=52000 / \mathrm{C}_{\mathrm{OSC}}$
$\mathrm{F}_{\mathrm{OSC}}$ in KHz , and $\mathrm{C}_{\mathrm{OSC}}$ in pF .
The suggested switching frequency is 250 KHz
Synchronization
Two or more LX1725 oscillators can be configured for synchronous operation. One unit, the master, is programmed for the desired frequency with Cosc as usual, also with the MASTER pin tied to V5V. The SYNC pin and the Cosc pin of the slave units should be tied to the SYNC pin and the Cosc pin of the master unit respectively. The MASTER pin of slave components is tied to GND. In this configuration, the SYNC pins of the slave units begin receiving instead of transmitting clock pulses. Also, the Cosc pins quit driving the PWM capacitor in the slave units. Note that for optimum performance, all slave units should be located as close to the master unit as possible (Figure 2).

Figure 2 - Two Devices Synchronized Block Diagram

Power On Reset (POR)

At start up or upon recovery from a fault condition, an internal "hiccup" counter counts 65536 clock cycles before allowing the outputs to begin switching. See the POR timing sequence in Figure 3.

Figure 3 - Power-On-Reset Timing Sequence The MASTER pin, as mentioned in Synchronization, is for multi devices operation. It is also a Quad-level control pin with three thresholds to enable Master/Slave and the "Quick" test mode. Quick mode forces the internal 65536 clock counter to be bypassed in order to speed-up production testing; this is usually for factory production test purposes.

V @ Master	Mode
$<\mathrm{V} 5 \mathrm{~V} / 4$	Slave, Normal Mode
$<\mathrm{V} 5 \mathrm{~V} / 2,>\mathrm{V} 5 \mathrm{~V} / 4$	Slave, Quick mode
$<3^{\star} \mathrm{V} 5 \mathrm{~V} / 4,>\mathrm{V} 5 \mathrm{~V} / 2$	Master, Quick mode
$>3^{\star} \mathrm{V} 5 \mathrm{~V} / 4$	Master, Normal mode

Gain Selection/Mute

The channel gain can be programmed between 26 dB and 20 dB by setting the HIGAIN pin to V5V or to GND. The MUTE pin is a Tri-level control pin for test purposes. When this pin is set to greater than $\mathrm{V} 5 \mathrm{~V} / 2$, the audio signal path is muted. For voltages between V5V/4 and V5V/2, the audio gain will be reduced by 6 dB . This allows the "Low Gain" mode to be tested. For voltages less than $\mathrm{V} 5 \mathrm{~V} / 4$, the normal gain is in place (Figure 4).

Figure 4 - Gain Selection Block Diagram

Production Data Sheet

FUNCTION DESCRIPTION(CONTINUED)

Stand by

Forcing the STBY pin high puts the LX1725 into a zero current sleep mode. The outputs enter a high impedance mode and all internal bias circuits are disabled.

Over Current Limit

The LX1725 has built-in over circuit protection. The circuit works by monitoring the voltage drop across whichever power FET is active. When this voltage is greater than a certain threshold, an over-current condition is assumed. If this condition occurs during five consecutive clock cycles, then the output transistors are immediately disabled. The hiccup counter then counts 65536 clock cycles before allowing the outputs to begin switching again. During this period the FLAG pin goes to HIGH to indicate a system fault. A "hiccup" condition will be clearly audible if a speaker is connected to the outputs. The threshold for the overcurrent condition is set to 3.75 A .
The over current circuit hiccup protection can be disabled by pulling the RILIM pin to V5V.

Under Voltage Lock-Out (UVLO)

If the voltage drops below $\pm 5 \mathrm{~V}$ under dual supply operation or 10 V under single supply operation, the under voltage lock out circuit is activated and the LX1725 will enter the standby mode. This switch-off will be silent and without pop noise. It will be recovered when the supply voltage rises above the threshold level.
The FLAG pin will go logic HIGH to indicate the system fault. A similar circuit monitors V5V with a threshold of 4 V .

Thermal Protection

When the junction temperature exceeds $125^{\circ} \mathrm{C}$, the gain is reduced by 6 dB (gain fold back) to reduce the output power and on-chip power dissipation., when the temperature drops below $110^{\circ} \mathrm{C}$ the gain will returns to normal. When the temperature exceeds $155^{\circ} \mathrm{C}$ the outputs are shut off to force the output current to zero. Again, when the temperature drops below $130^{\circ} \mathrm{C}$ the outputs are allowed to switch and normal operation resumes.

Audio Input

For a high common mode rejection ratio and a maximum flexibility in the application, the audio inputs are fully differential. By connecting the inputs anti-parallel the phase of one of the channels can be inverted, so that a load can be connected between the two output filters. In this case the system operates as a mono BTL amplifier and with the same loudspeaker impedance an approximately four times higher output power can be obtained. The input configuration for a mono BTL application is illustrated in Figure 6. In the stereo single-ended configuration it is also recommended to connect the two differential inputs in anti-phase. This has advantages for the current handling of the power supply at low signal frequencies.

Figure 6 - Audio Input Block Diagram

Production Data Sheet

Figure 7 - Test Circuit Schematic (Stereo, Split Supply)

Figure 8 - System Test Set-up

TEST SYSTEM CONFIGURATION

Figure 9 - System Test Configuration

15W+15W Stereo Class-D Amplifier Filterless 30W Mono in BTL

15W+15W Stereo Class-D Amplifier Filterless 30W Mono in BTL

Production Data Sheet

Note 1 - The output LC filter are based on $80 H M$ design, $\mathrm{L}=47 \mathrm{uH}, \mathrm{C}=0.68 \mathrm{uF}$, the 4 OHM load LC filter design please refer to the application notes. Note 2 - At single supply mode, the output AC coupling capacitor value based on 470 uF , for lower cut-off frequency, please refer to the application notes.

15W+15W Stereo Class-D Amplifier Filterless 30W Mono in BTL

Production Data Sheet

15W+15W Stereo Class-D Amplifier

 Filterless 30W Mono in BTL
Production Data Sheet

15W+15W Stereo Class-D Amplifier

 Filterless 30W Mono in BTL
Production Data Sheet

APPLICATION SCHEMATICS

Note: This design for Typical 4Ω load, other than 4Ω. Please refer to application notes $\mathrm{AN}-35$ to change L.C. value

Figure 17 - Application Schematic (Stereo, Split Supply)

15W+15W Stereo Class-D Amplifier

 Filterless 30W Mono in BTL
Production Data Sheet

Figure 18 - Application Schematic (Stereo, Single Supply)

Figure 19 - Application Schematic (BTL, Split Supply)

Figure 20 - Application Schematic (BTL, Single Supply)

Production Data Sheet

PCB DESIGN GUIDELINES

PCB DEsign Guidelines

One of the key efforts in implementing the MLP package on a pc board is the design of the land pattern. The MLP has rectangular metallized terminals exposed on the bottom surface of the package body. Electrical and mechanical connection between the component and the pc board is made by screen printing solder paste on the pc board and then reflowing the paste after placement. To guarantee reliable solder joints it is essential to design the land pattern to the MLP terminal pattern, exposed PAD, and Thermal PAD via. There are two basic designs for PCB land pads for the MLP: Copper Defined style (also known as Non Solder Mask Defined (NSMD)) and the Solder Mask Defined style (SMD). The industry has had some debate on the merits of both styles and although Microsemi recommends the Copper Defined style land pad (NSMD), both styles are acceptable for use with the MLP package.
NSMD pads are recommended over SMD pads due to the tighter tolerance on copper etching than solder masking. NSDM by definition also provides a larger copper pad area and allows the solder to anchor to the edges of the copper pads thus providing improved solder joint reliability.

Design of PCB Land Pattern for Package TERMINALS

As a general rule, the PCB lead finger pad (Y) should be designed $0.2-0.5 \mathrm{~mm}$ longer than the package terminal length for good filleting. The pad length should extend 0.05 mm towards the centerline of the package. The pad width (X) should be a minimum 0.05 mm wider than the package terminal width $(0.025 \mathrm{~mm}$ per side), refer to figure 21. However, the pad width is reduced to the width of the component terminal for lead pitches below 0.65 mm . This is done to minimize the risk of solder bridging.

Figure 21 - PC Board Land Pattern Geometry for MLP Terminals

Exposed Pad PCB DESIGN

The construction of the Exposed Pad MLP enables enhanced thermal and electrical characteristics. In order to take full advantage of this feature the exposed pad must be physically connected to the PCB substrate with solder. The exposed pad is internally connected to the die substrate potential which is VNEG so it is very important that the PCB substrate potential be connected to VNEG as well.
The thermal pad (D2th) should be greater than D2 of the MLP whenever possible; however adequate clearance (Cpl $>0.15 \mathrm{~mm}$) must be met to prevent solder bridging. If this clearance cannot be met, then D2th should be reduced in area. The formula would be: D2TH >D2 only if D2TH < Gmin - ($2 \times \mathrm{Cpl}$).

Thermal Pad Via Design

There are two types of on-board thermal PAD designs: one is using thermal vias to sink the heat to the other layer with metal traces. Based on the Jedec Specification (JESD 51-5) the thermal vias should be designed like Figure 22. Another one is the no via thermal PAD which is using the same side copper PAD as heat sink, this type of thermal PAD is good for a two layer board, since the bottom side is filled with all other kinds of trace also, it's hard to use the whole plane for the heat sink. But you still can use vias to sink the heat to the bottom layer by the metal traces, then layout a NMSD on which a metal heat sink is put to sink the heat to the air.

Micro Lead Quad Package Land Pattern

Land Pattern for Four Layer Board with Vias

Figure 22 - Comparison of land pattern theory

Production Data Sheet

PCB DESIGN GUIDELINES (CONTINUED)

The LX1725 is supplied in an MLPQ-7mmx7mm, 32 pin package. $\quad \theta_{\mathrm{JA}}=29.3^{\circ} \mathrm{C} / \mathrm{W}$ for the package by itself in still air. When running at a continuous 20 W output power, the on-chip power dissipation will be 3.5 W assuming 85% efficiency. With no reduction in the thermal resistance, the die temperature will rise 103 above ambient. θ_{JC} is about $4^{\circ} \mathrm{C} / \mathrm{W}$. If the exposed pad is properly connected to a heat sink, then the temperature rise will be reduced to around $16^{\circ} \mathrm{C}$ under these condition. So the non-via type thermal PAD is suggested.

Figure 23 - Recommended Land Pad with Vias for LQ32 (7mm²)

Zmin= $\mathrm{D}+$ aaa $+2(0.2)$
(where pkg body tolerance aaa=0.15)
(where 0.2 is outer pad extension)
Gmin= D-2(Lmax)-2(0.05)
(where 0.05 is inner pad extension)
(Lmax $=0.50$ for this example)
D2th max $=$ Gmin-2 (CpL)
(where $C p L=0.2$)

Production Data Sheet

Note: Dimensions do not include mold flash or protrusions; these shall not exceed $0.155 \mathrm{~mm}(.006$ ") on any side. Lead dimension shall not include solder coverage.
\square

NOTES

PRODUCTION DATA - Information contained in this document is proprietary to Microsemi and is current as of publication date. This document may not be modified in any way without the express written consent of Microsemi. Product processing does not necessarily include testing of all parameters. Microsemi reserves the right to change the configuration and performance of the product and to discontinue product at any time.

