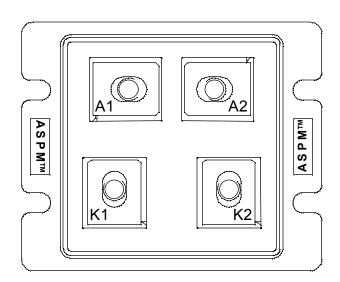


APTDF500U40G


Single diode Power Module

$$V_{CES} = 400V$$

 $I_{C} = 500A @ Tc = 80°C$

Application

- Anti-Parallel diode
 - Switchmode Power Supply
 - Inverters
- Snubber diode
- Uninterruptible Power Supply (UPS)
- Induction heating
- Welding equipment
- High speed rectifiers
- Electric vehicles

Features

- Ultra fast recovery times
- Soft recovery characteristics
- Very low stray inductance
- High blocking voltage
- High current
- Low leakage current

Benefits

- Low losses
- Low noise switching
- Direct mounting to heatsink (isolated package)
- Low junction to case thermal resistance
- RoHS Compliant

Absolute maximum ratings

Symbol	Parameter			Max ratings	Unit
V_R	Maximum DC reverse Voltage			400	V
V_{RRM}	Maximum Peak Repetitive Reverse Voltage			400	v
I _{F(A V)}	Maximum Average Forward	Duta and a = 500/	$T_c = 25$ °C	500	
	Current	Duty cycle = 50%	$T_c = 80$ °C	500	A
I _{F(RMS)}	RMS Forward Current		850	Α	
I_{FSM}	Non-Repetitive Forward Surge Current $T_j = 2$		$T_j = 25^{\circ}C$	5000	

CAUTION: These Devices are sensitive to Electrostatic Discharge. Proper Handing Procedures Should Be Followed. See application note APT0502 on www.microsemi.com

APTDF500U40G

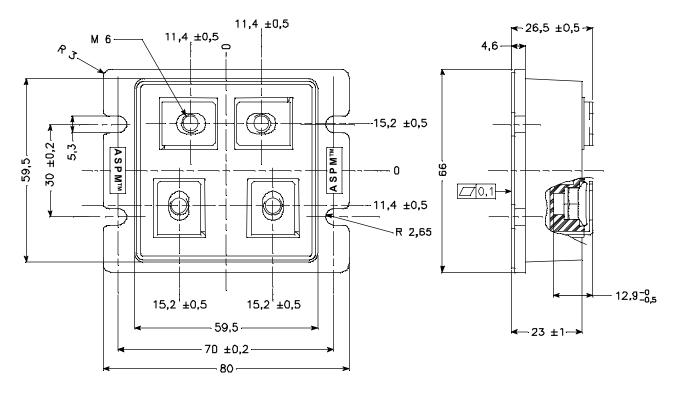
All ratings @ $T_j = 25$ °C unless otherwise specified

Electrical Characteristics

Symbol	Characteristic	Test Conditions		Min	Typ	Max	Unit
V_{F}	Diode Forward Voltage	$I_F = 500A$				1.5	
		$I_F = 1000A$			1.5		V
		$I_F = 500A$	$T_{j} = 150^{\circ}C$			1.3	
I_{RM}	Marimum Davarga Laska as Current	$V_R = 400V$	$T_j = 25^{\circ}C$			2500	^
	Maximum Reverse Leakage Current	v _R – 400 v	$T_{j} = 150^{\circ}C$			5000	μΑ
C_{T}	Junction Capacitance	$V_R = 200 V$			800		pF

Dynamic Characteristics

	Characteristic	Test Conditions		Min	Typ	Max	Unit
t_{rr1}	Reverse Recovery Time	$I_F=1 A, V_R=30 V$ $di/dt = 15 A/\mu s$	$T_j = 25$ °C			50	
t _{rr2}		$I_F = 500 A$	$T_j = 25$ °C			120	ns
t _{rr3}		$V_R = 240V$ $di/dt=1000A/\mu s$	$T_j = 100^{\circ}C$			260	
$t_{\rm fr1}$	Forward Recovery Time		$T_j = 25^{\circ}C$		210		ns
$t_{\rm fr2}$			$T_{j} = 100^{\circ}C$		220		
I_{RRM1}	Reverse Recovery Current		$T_j = 25^{\circ}C$			50	A
I _{RRM2}			$T_j = 100^{\circ}C$			120	
Q_{rr1}	Reverse Recovery Charge	$I_F = 500 A$ $V_R = 240 V$	$T_j = 25$ °C			3	μC
Q _{rr2}		$di/dt=1000A/\mu s$	$T_j = 100$ °C			15.6	μ.
$V_{\mathrm{fr}1}$	Forward Recovery Voltage		$T_j = 25$ °C		19		V
V_{fr2}			$T_{j} = 100^{\circ}C$		19		•
$d_{\mathrm{IM}/\mathrm{dt}}$	Rate of Fall of Recovery Current		$T_j = 25$ °C		1200		A/μs
IIVI/ dt			$T_{j} = 100^{\circ}C$	•	1800	·	μυ


Thermal and package characteristics

Symbol	Characteristic			Min	Typ	Max	Unit
R_{thJC}	Junction to Case Thermal Resistance					0.08	°C/W
V _{ISOL}	RMS Isolation Voltage, any terminal to case t=1 min, I isol<1mA, 50/60Hz			2500			V
T_{J}	Operating junction temperature range			-40		150	°C
T_{STG}	Storage Temperature Range			-40		125	
$T_{\rm C}$	Operating Case Temperature	-40		100			
Torque	Mounting torque	To heatsink	M5	2.5		3.5	N.m
	Torque	wounding torque	For terminals	M6	3		4
Wt	Package Weight					250	g

APTDF500U40G

LP4 Package outline (dimensions in mm)

Microsemi reserves the right to change, without notice, the specifications and information contained herein

Microsemi's products are covered by one or more of U.S patents 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336 6,503,786 5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058 and foreign patents. U.S and Foreign patents pending. All Rights Reserved.