Common Source
Push-Pull Pair

ARF475FL

RF POWER MOSFET

N-CHANNEL ENHANCEMENT MODE

165V 300W
The ARF475FL is a matched pair of RF power transistors in a common source configuration. It is designed for high voltage push-pull or parallel operation in narrow band ISM and MRI power amplifiers up to 150 MHz .

- Specified 150 Volt, 128 MHz Characteristics:

Output Power = 900 Watts Peak
Gain = 15dB (Class AB)
Efficiency $=50 \%$ min

- High Performance Push-Pull RF Package.
- High Voltage Breakdown and Large SOA for Superior Ruggedness.
- Low Thermal Resistance.

MAXIMUM RATINGS

All Ratings: $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

Symbol	Parameter	ARF475FL	UNIT		
$\mathrm{V}_{\mathrm{DSS}}$	Drain-Source Voltage	500	Volts		
$\mathrm{V}_{\mathrm{DGO}}$	Drain-Gate Voltage	500			
I_{D}	Continuous Drain Current $@ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \quad$ (each device)	10	Amps		
V_{GS}	Gate-Source Voltage	± 30	Volts		
P_{D}	Total Device Dissipation $@ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	483	Watts		
$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {STG }}$	Operating and Storage Junction Temperature Range	-55 to 175	${ }^{\circ} \mathrm{C}$		
T_{L}	Lead Temperature: 0.063 " from Case for 10 Sec.	300			

STATIC ELECTRICAL CHARACTERISTICS (each device)

Symbol	Characteristic / Test Conditions	MIN	TYP	MAX	UNIT
$\mathrm{BV}_{\text {DSS }}$	Drain-Source Breakdown Voltage ($\left.\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mu \mathrm{~A}\right)$	500			ts
$\mathrm{V}_{\text {DS(ON) }}$	On State Drain Voltage ${ }^{(1)}\left(\mathrm{I}_{\mathrm{D}(0 \times)}=5 \mathrm{~A}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}\right)$		2.9	4	Volts
$I_{\text {DSS }}$	Zero Gate Voltage Drain Current ($\left.\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{DSS}}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}\right)$			25	$\mu \mathrm{A}$
	Zero Gate Voltage Drain Current ($\left.\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{~T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$			250	
$\mathrm{I}_{\text {GSS }}$	Gate-Source Leakage Current ($\left.\mathrm{V}_{\mathrm{GS}}= \pm 30 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}\right)$			± 100	nA
g_{fs}	Forward Transconductance ($\left.\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}\right)$	3	3.6		mhos
$\mathrm{g}_{\mathrm{fs} 1 /} \mathrm{g}_{\mathrm{fs} 2}$	Forward Transconductance Match Ratio ($\left.\mathrm{V}_{\mathrm{DS}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}\right)$	0.9		1.1	
$\mathrm{V}_{\mathrm{GS} \text { (TH) }}$	Gate Threshold Voltage ($\left.\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=200 \mathrm{~mA}\right)$	2	3.3	4	Volts
$\Delta \mathrm{V}_{\mathrm{GS} \text { (TH) }}$	Gate Threshold Voltage Match ($\left.\mathrm{V}_{\mathrm{DS}}=\mathrm{V}_{\mathrm{GS}}, \mathrm{I}_{\mathrm{D}}=200 \mathrm{~mA}\right)$			0.2	

THERMAL CHARACTERISTICS

Symbol	Characteristic	MIN	TYP	MAX	UNIT
$R_{\theta J C}$	Junction to Case			0.31	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{R}_{\theta C S}$	Case to Sink (Use High Efficiency Thermal Joint Compound and Planar Heat Sink Surface.)		0.1		

CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com

DYNAMIC CHARACTERISTICS (per section)
ARF475FL

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
$\mathrm{C}_{\text {iss }}$	Input Capacitance	$\begin{gathered} V_{G S}=0 V \\ V_{D S}=50 \mathrm{~V} \\ f=1 \mathrm{MHz} \end{gathered}$		780	900	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance			125	150	
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance			7	10	
$\mathrm{t}_{\mathrm{d} \text { (on) }}$	Turn-on Delay Time	$\begin{gathered} \mathrm{V}_{\mathrm{GS}}=15 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=250 \mathrm{~V} \\ \mathrm{I}_{\mathrm{D}}=\mathrm{I}_{\mathrm{D}[\text { Cont.] }]} @ 25^{\circ} \mathrm{C} \\ \mathrm{R}_{\mathrm{G}}=1.6 \Omega \end{gathered}$		5.1	10	ns
t_{r}	Rise Time			4.1	8	
$\mathrm{t}_{\mathrm{d} \text { (off) }}$	Turn-off Delay Time			12	18	
t_{f}	Fall Time			4.0	7	

FUNCTIONAL CHARACTERISTICS (Push-Pull Configuration)

Symbol	Characteristic	Test Conditions	MIN	TYP	MAX	UNIT
G_{PS}	Common Source Amplifier Power Gain	$f=128 \mathrm{MHz}$	14	16		dB
η	Drain Efficiency	$\mathrm{P}_{\text {out }}=900 \mathrm{~W}$	50	55		\%
ψ	Electrical Ruggedness VSWR 5:1	10% duty cycle	No Degradation in Output Power			

(1) Pulse Test: Pulse width < 380μ S, Duty Cycle < 2\%.

APT Reserves the right to change, without notice, the specifications and information contained herein.

Per transistor section unless otherwise specified.

Figure 2, Typical Capacitance vs. Drain-to-Source Voltage

Figure 3, Typical Transfer Characteristics

Figure 4, Typical Threshold Voltage vs Temperature

Figure 5b, TRANSIENT THERMAL IMPEDANCE MODEL

Table 1 - Typical Series Equivalent Large Signal Input - Output Impedance

Freq. (MHz)	$\mathrm{Z}_{\text {in }}(\Omega)$ gate to gate	$\mathrm{Z}_{\mathrm{oL}}(\Omega)$ drain - drain
30	$5.2-\mathrm{j} 10$	$41-\mathrm{j} 20$
60	$1.37-\mathrm{j} 5.2$	$26-\mathrm{j} 25$
90	$.53-\mathrm{j} 2.6$	$16-\mathrm{j} 23$
120	$.25-\mathrm{j} 1.0$	$10-\mathrm{j} 20$
150	$.25+\mathrm{j} 0.2$	$6.7-\mathrm{j} 17$

$Z_{\text {in }}$ - Gate -gate shunted with $25 \Omega \quad I_{D Q}=15 \mathrm{~mA}$ each side
Z_{oL} - Conjugate of optimum load for 600 Watts peak output at $\mathrm{V}_{\mathrm{dd}}=150 \mathrm{~V}$ 25% duty cycle and PW $=5 \mathrm{~ms}$

R1-2 3.1Ω : 3 parallel 22Ω 1W 2512 SMT
R3-4 2.2k $1 / 4 \mathrm{~W}$ axial
T1 1:1 balun 50Ω coax on Fair-Rite 2843000102 core
T2 4:1 25Ω coax on 2843000102 Fair-Rite balun core
T3 1:1 coax balun RG-303 on 2861006802 Fair-Rite core
TL1-2 Printed line L=0.75" $w=.23^{\prime \prime}$
TL3-6 Printed line L=0.65" w =.23"
0.23 " wide stripline on FR-4 board is $\sim 30 \Omega Z_{0}$

Peak Output Power vs. Vdd and Duty Cycle

Thermal Considerations and Package Mounting:

The rated power dissipation is only available when the package mounting surface is at $25^{\circ} \mathrm{C}$ and the junction temperature is $175^{\circ} \mathrm{C}$. The thermal resistance between junctions and case mounting surface is $0.3^{\circ} \mathrm{C} / \mathrm{W}$. When installed, an additional thermal impedance of $0.1^{\circ} \mathrm{C} / \mathrm{W}$ between the package base and the mounting surface is typical. Insure that the mounting surface is smooth and flat. Thermal joint compound must be used to reduce the effects of small surface irregularities. Use the minimum amount necessary to coat the surface. The heatsink should incorporate a copper heat spreader to obtain best results.

The package design clamps the ceramic base to the heatsink. A clamped joint maintains the required mounting pressure while allowing for thermal expansion of both the base and the heat sink. Four 4-40 (M3) screws provide the required mounting force. $T=6$ in-lb ($0.68 \mathrm{~N}-\mathrm{m}$).

Notes:

The value of L1 must be adjusted as the supply voltage is changed to maintain resonance in the output circuit. At 128 MHz its value changes from approximately 40 nH at 100 V to 30 nH at 150V.

With the 50Ω drain-to-drain load, the duty cycle above 100 V must be reduced to insure power dissipation is within the limits of the device. Maximum pulse length should be 100 mS or less. See transient thermal impedance, figure 5.

[^0]
[^0]: HAZARDOUS MATERIAL WARNING
 The white ceramic portion of the device between leads and mounting surface is beryllium oxide, BeO. Beryllium oxide dust is toxic when inhaled. Care must be taken during handling and mounting to avoid damage to this area. These devices must never be thrown away with general industrial or domestic waste.

 APT's products are covered by one or more of U.S.patents $4,895,8105,045,9035,089,4345,182,2345,019,522$
 $5,262,3366,503,7865,256,5834,748,1035,283,2025,231,4745,434,0955,528,0586,939,743$ andforeign patents. US and Foreign patents pending. All Rights Reserved.

