
1100 Watts, 50 Volts Pulsed Avionics at 1030 MHz

## **GENERAL DESCRIPTION**

The MDS1100 is a high power COMMON BASE bipolar transistor. It is designed for pulsed systems at 1030 MHz, with the pulse width and duty required for MODE-S applications. The device has gold thin-film metalization and emitter ballasting for proven highest MTTF. The transistor includes input and output prematch for broadband capability. Low thermal resistance package reduces junction temperature, extends life.

## **ABSOLUTE MAXIMUM RATINGS**

| Maximum Power Dissipation<br>Device Dissipation @ 25°C <sup>1</sup><br>Maximum Voltage and Current          | 8750 W                 |
|-------------------------------------------------------------------------------------------------------------|------------------------|
| Collector to Base Voltage $(BV_{ces})$<br>Emitter to Base Voltage $(BV_{ebo})$<br>Collector Current $(I_c)$ | 65 V<br>4.5 V<br>100 A |
| Maximum TemperaturesStorage Temperature-65Operating Junction Temperature                                    | to +200 °C<br>+200 °C  |



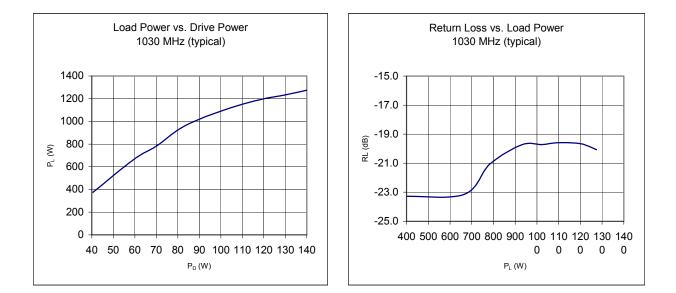
CASE OUTLINE 55TU-1

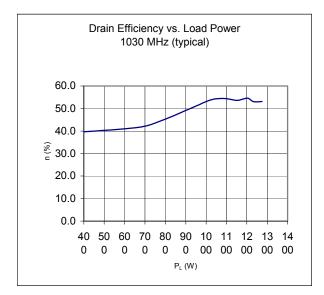
#### **ELECTRICAL CHARACTERISTICS** @ 25°C

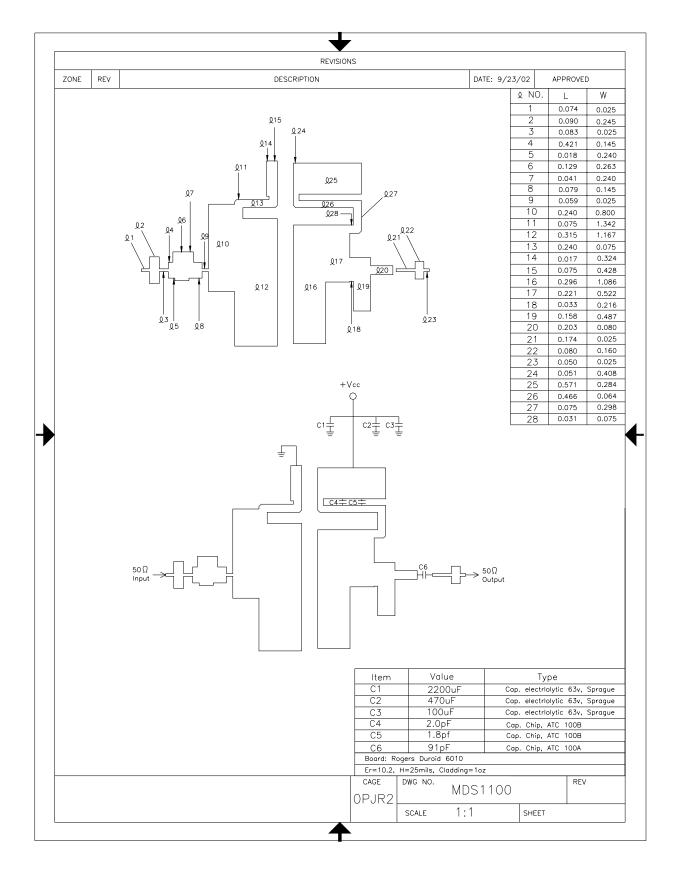
| SYMBOL         | CHARACTERISTICS                      | TEST CONDITIONS                                   | MIN   | ТҮР | MAX | UNITS |
|----------------|--------------------------------------|---------------------------------------------------|-------|-----|-----|-------|
| Pout           | Power Out                            | Note 2                                            | 1100  |     |     | W     |
| Pg             | Power Gain                           |                                                   | 9.8   |     |     | dB    |
| Pout           | Power Out                            | Note 3                                            | 1000  |     |     | W     |
| Pg             | Power Gain                           |                                                   | 9.4   |     |     | dB    |
| η <sub>c</sub> | Collector Efficiency                 | $F = 1030 \text{ MHz}, V_{cc} = 50 \text{ Volts}$ | 45    |     |     | %     |
| R <sub>L</sub> | Return Loss                          |                                                   | -10   |     |     | dB    |
| Tr             | Rise Time                            |                                                   |       |     | 85  | ns    |
| Pd             | Pulse Droop                          |                                                   |       |     | 0.7 | dB    |
| VSWR           | Load Mismatch Tolerance <sup>1</sup> |                                                   | 4.0:1 |     |     |       |

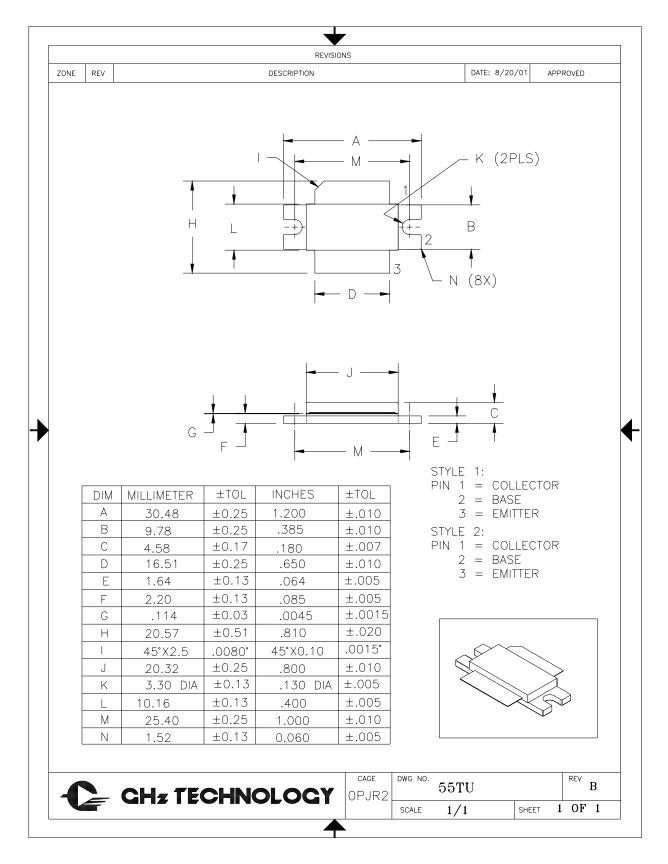
#### FUNCTIONAL CHARACTERISTICS @ 25°C

| BV <sub>ebo</sub> | Emitter to Base Breakdown      | Ie = 50 mA        | 3.5 |      | V    |
|-------------------|--------------------------------|-------------------|-----|------|------|
| BV <sub>ces</sub> | Collector to Emitter Breakdown | Ic = 100 mA       | 65  |      | V    |
| $h_{\mathrm{FE}}$ | DC – Current Gain              | Vce = 5V, Ic = 5A | 20  |      |      |
| $\theta jc^1$     | Thermal Resistance             |                   |     | 0.02 | °C/W |


NOTES: 1. At rated output power and pulse conditions


2. 74  $\mu$ s burst, 0.5  $\mu$ s on, 1.5  $\mu$ s off, 7.4 ms period, Pin = 125 Watts


3. 128  $\mu$ s burst, 0.5  $\mu$ s on/0.5  $\mu$ s off, 6.4 ms period, Pin = 115 Watts


Rev - Nov 2003









